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ABSTRACT
Database query evaluation over encrypted data has received
a lot of attention recently. Order Preserving Encryption
(OPE) and Order Revealing Encryption (ORE) are two im-
portant encryption schemes that have been proposed in this
area. These schemes can provide very efficient query exe-
cution, but at the same time may leak some information to
adversaries. More protocols have been introduced that are
based on Searchable Symmetric Encryption (SSE), Oblivi-
ous RAM (ORAM) or custom encrypted data structures. In
this paper, we present the first comprehensive comparison
among a number of important secure range query proto-
cols using a framework that we developed. We evaluate five
ORE-based and five generic range query protocols. We an-
alyze and compare them both theoretically and experimen-
tally and measure their performance over database indexing
and query evaluation. We report not only execution time
but also I/O performance, communication amount, and us-
age of cryptographic primitive operations. Our compari-
son reveals some interesting insights concerning the relative
security and performance of these approaches in database
settings.
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1. INTRODUCTION
Order Preserving Encryption (OPE) was proposed by Agrawal

et al. [2] and has received a lot of interest recently. The main
idea is to “encrypt” numerical values into ciphertexts that
have the same order as the original plaintexts. This is a very
useful primitive since it allows a database system to make
comparisons between chiphertexts and get the same results
as if it had operated on plaintexts. A scheme was proposed
in [2] but no security analysis was given.
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Boldyreva et al. [9] were the first to treat OPE schemes
from a cryptographic point of view, providing security mod-
els and rigorous analysis. The ideal functionality of such a
scheme is to leak only the order of the plaintexts and noth-
ing more. However, it was shown in Boldyreva et al. [9]
that the ideal functionality is not achievable if the scheme is
stateless and immutable. Furthermore, they showed that the
(stateless) scheme that they proposed leaks at least half of
the bits of the plaintext [10]. Since then, a number of OPE
schemes have been proposed that provide different perfor-
mance and security guarantees. In order to achieve the ideal
functionality, Popa, Li, and Zeldovich [53] proposed a mu-
table scheme that maps plaintexts to their ranks and need
the full state of the dataset. Notice that, an insertion or a
deletion of a value may change the ranks, and therefore the
ciphertexts, of multiple values. Kerschbaum [38] proposed
an improvement on this scheme that hides also the frequen-
cies of each plaintext (how many times a give value appears
in the dataset).

Furthermore, in order to improve the security of these
schemes, Boneh et al. [11] proposed the idea of Order Reveal-
ing Encryption (ORE). In ORE, ciphertexts have no partic-
ular order and look more like typical semantically secure
encryptions. The database system has a special comparison
function that can be used to compare two ciphertexts. These
schemes are more secure than OPE schemes, although still
leak some information, and in general are more expensive
to compute. Actually, OPE can be seen as a special case of
ORE. Since these schemes leak some information, a number
of recent works considered attacks on systems that may use
these schemes [31, 32, 51, 27, 37, 13, 23, 43, 5, 62]. Most of
these attacks assume auxiliary information and attack the
systems assuming that no other security.

OPE and ORE schemes can be used almost no changes to
the underlying database search. However, to provide greater
security a number of more complex protocols for securing
data in outsourced databases have also been proposed. The
most secure of these — so-called Oblivious RAM (ORAM)
— provides strong, well-understood, cryptographic privacy
guarantees with no information leakage.

Applications that can benefit of such schemes and proto-
cols include cloud access security broker (CASB) and finan-
cial and banking applications. Indeed, a number of com-
mercial CASBs including Skyhigh Networks [57] and Ci-
pherCloud [20] have been using some form of OPE or ORE
schemes in their systems. In addition a number of financial
institutions can encrypt their data using the aforementioned
schemes in order to provide another layer of security on their
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data assuming that the overhead is small or minimal. For
many of these applications either auxiliary information that
is needed for the attacks mentioned above may not be avail-
able or difficult to get.

Currently, it is a very challenging task for users to choose
an appropriate data privacy approach for their outsourced
application, because the security and performance tradeoff
is not well understood. Both security and performance of
every approach need to be thoroughly evaluated. However,
characterizing security benefits of different approaches re-
mains an open problem, unlikely to be solved in the imme-
diate future. On the other, it is at least possible to evaluate
the performance of each approach, so as to enable better-
informed decisions about whether the improved performance
of some schemes is worth the uncertainty about the security
they achieve.

We emphasize that evaluating performance of these schemes
is not a trivial task. Many of the papers presenting the above
approaches provide only a theoretical treatment and concen-
trate more on the security definitions and analysis and less
on the performance. Some of these schemes have not been
even implemented properly. Furthermore, even-though the
main target of these schemes are database applications, most
of them have not been evaluated in database settings.

To address this problem, in this paper we design a new
framework that allows for systematic and extensive compar-
ison of OPE and ORE schemes and protocols for database
applications. We employ these schemes in database index-
ing techniques (i.e. B+ trees) and query protocols and we
report various costs including I/O complexity.

The main contribution of this work is to present an ex-
perimental evaluation using both real and synthetic datasets
using our new framework that tracks not only time but also
primitive usage, I/O complexity, and communication cost.
In the process, we present improvements for some of the
schemes that make them more efficient and/or more se-
cure. To make understanding of these schemes easier for
the reader, we present the main ideas behind these schemes,
discuss their security definitions and leakage profiles, and
provide an analysis of implementation challenges for each
one.

• We discuss the security definitions for a number of im-
portant schemes and protocols and we contrast their
leakage profiles.
• We present the main ideas behind these schemes and

protocols and we provide our analysis and implemen-
tation challenges for each one. In addition, we present
improvements for some of the schemes that make them
more efficient and/or more secure.
• Finally, we give an overall picture of the different meth-

ods and we make recommendations to practitioners.

1.1 Related work
A number of OPE schemes have been proposed recently

including [2, 52, 9, 10, 59, 39, 63, 35, 38, 36, 65, 64, 47,
24, 46]. Popa, Li, and Zeldovich [53] present a nice analysis
of these schemes and they are the first to show that using a
stateful scheme you can achieve the ideal security guarantees
for OPE. We pick two of these schemes (BCLO [9] and FH-
OPE [38]) that are the most representative and outperform
other schemes.

In addition, there are a number of ORE schemes [11, 19,
45, 17, 16, 12, 29, 25] that have been proposed. We choose

the most practical and most secure of them [19, 45, 17], to
include in the comparison. Also, there are some approaches
that assume an outsourced setting where the client may have
to communicate with the server during query processing [55,
40, 6, 22]. We choose two of these protocols [55, 40] because
they are based on OPE and ORE approaches and therefore
have similar security models with these schemes. We would
like to point out that there are some other methods that
can be used to run range queries on encrypted data that
use different types of schemes and techniques. See [6] and
[48] for an overview of other methods. In this paper we con-
sider two of the protocols proposed in [22] that use Search-
able Symmetric Encryption (SSE). Finally, we would like to
stress that the schemes and protocols discussed here should
be used with care. The schemes provide specific primitives,
security guarantees and leakage profiles, and it is up to the
practitioner how to use them.

2. SECURITY PERSPECTIVE
Each scheme and protocol we analyze has its own security

definition, which captures leakage from a lot to nothing. We
attempt to unify these definitions and analyze them under
a common framework. We also attempt to assess relative
security of these definitions and analyze their leakages.

In this work we mostly consider the snapshot model, where
the attacker can observe all the database contents at differ-
ent time instants. Note that this excludes timing attacks
such measuring encryption time. All security definitions of
the schemes and protocols that we discuss here are based on
this model. Also, the snapshot attacker is the most common
attacker that we face today [6]. The idea is that a hacker
or an insider can steal the entire encrypted database and all
its contents at some point in time.

Besides snapshot model a stronger setting allows an adver-
sary to track communication and data manipulation. Most
notably, attacker can see and analyze communication vol-
ume and access pattern in real time. There are ways to
protect against such attacker — ORAM against access pat-
tern and differential privacy against communication volume
leakage. Although this model is not a primary target of this
paper, our benchmark includes a protocol (Section 4.5.2)
that is secure in this setting to show the cost of adding such
protection.

We wanted to specifically comment on a work of Grubbs et
al. [28], which demonstrates a series of attacks against OPE
and ORE schemes. The attacks can be very successful, but
depend on certain prerequisites. First, all attacks assume
the existence of a well-correlated auxiliary dataset. Second,
the binomial attack, which works against a “perfectly se-
cure frequency-hiding scheme”, reliably recovers only high-
frequency elements. Finally, the attacks are specifically dev-
astating against encrypted strings (e.g. first and last names)
as opposed to numerical data, and we also do not recom-
mend using OPE/ORE for strings (see next subsection).
One of the conclusions of our work is that security is nega-
tively correlated with performance and it is up to a practi-
tioner to trade off security and performance constraints.

2.1 A note on variable-length inputs
A generic OPE/ORE scheme accepts bit-strings of any

length as inputs, and treats them as numbers or processes
them bit-by-bit. One might think that supplying raw bytes
of variable length (e.g. encoded strings) to OPE/ORE schemes
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may naturally work. We warn against it. Such an approach
will introduce both performance and security challenges.

From the performance standpoint, OPE/ORE schemes’
complexity usually depends on input length at least linearly
(see Table 1). 32-bit numbers already introduce a notice-
able overhead for some (usually more secure) schemes, and
supplying arbitrary-length inputs may worsen performance
an order of magnitude.

Security of such a construction will be minimal as most
schemes leak some information about a magnitude of a dif-
ference, and longer inputs will naturally be treated as larger
numbers. Thus, the difference between long and short inputs
will be apparent. We refer to the work of Grubbs et al. [28]
as they have a practically supported discussion of security
consequences of using OPE/ORE with arbitrary strings.

On the other hand, other protocols in our benchmark can
usually handle variable-length inputs as long as they fit into
a single block for the underlying block cipher.

3. OPE AND ORE SCHEMES
Order-Revealing Encryption scheme is a triple of polynomial-

time algorithms KGen, Enc and Cmp. KGen generates a
key of parameterized length (the λ parameter). Enc takes a
numerical input (as a bit string) and produces a ciphertext.
Cmp takes two ciphertexts generated by the scheme and out-
puts whether the first plaintext was strictly less than the sec-
ond. Note that being able to check this condition is enough
to apply all other comparison operators (<, ≤, =, ≥, >).
Also note that an ORE scheme does not include a decryption
algorithm, because one can simply append a symmetric en-
cryption of the plaintext to the produced ciphertext and use
it for decryption.1 An Order Preserving Encryption (OPE)
scheme is particular case of an ORE scheme where cipher-
text is numerical and thus Cmp routine is trivial (the nu-
merical order of ciphertexts is the same as underlying plain-
texts). OPE may optionally include decryption algorithm,
since appending symmetric ciphertext is no longer possible.

Both OPE and ORE schemes by definition allow to totally
order the ciphertexts. This is their inherent leakage (by
design) and all the OPE/ORE security definitions account
for these and possibly additional leakage.

We proceed by describing and analyzing the OPE/ORE
schemes we have benchmarked. All plaintexts are assumed
to be 32-bit signed integers, or n-bit inputs in complexity
analysis. OPE ciphertexts are assumed to be 64-bit signed
integers.

From here, we will use the term ORE to refer to both
OPE and ORE, unless explicitly stated otherwise. Each
scheme has its own subsection where the first part is the
construction overview followed by security discussion, and
the second part is our theoretical and experimental analysis.

3.1 BCLO OPE
The OPE scheme by Boldyreva et al. [9] was the first

OPE scheme that provided formal security guarantees and
was used in one of the first database systems that executes
queries over encrypted data (CryptDB [54]).

1 Given the secret key, it is possible to decrypt a ciphertext
by doing binary search on the plaintext domain: encrypting
known values and comparing them against the target cipher-
text, until the target plaintext is found. However, this would
require O (log |D|) encryption and comparison operations.

The core principle of their construction is the natural con-
nection between a random order-preserving function and the
hypergeometric probability distribution. Authors formalize
this principle proving a bijection between the set of all order-
preserving functions from a domain of size M to a range of
size N ≥ M and the set of all possible combinations of M
out of N ordered items.

The encryption algorithm works by splitting the domain
into two parts according to a value sampled from the hyper-
geometric distribution (HG) routine and splitting the range
in half recursively. When the domain size contains a single
element, the corresponding ciphertext is sampled uniformly
from the current range.

All pseudo-random decisions are made by an internal PRG
(TapeGen in [9]). This way not only they ensure that the al-
gorithm is deterministic, but also allow for decryption. The
decryption procedure takes the same “path” of splitting do-
main and range, and when the domain size reaches one, the
only left value is the original plaintext.
Security. This scheme is POPF-CCA secure [9], mean-
ing that it is as secure as the underlying ideal object —
randomly sampled order-preserving function from a certain
domain to a certain range. For practical values of the pa-
rameters, Boldyreva, Chenette, and O’Neill [10] showed that
the distance between the plaintexts can be approximated to
an accuracy of about the square root of the domain size. In
other words, approximately, half of the bits (the most signif-
icant) are leaked. Grubbs et al. [28] showed that this leakage
allows to almost entirely decrypt the ciphertexts (given aux-
ilary data with a similar distribution) and encrypting strings
with this scheme is especially dangerous (see Section 2.1).

Analysis and implementation challenges
Efficient sampling from hypergeometric distribution is a chal-
lenge by itself. Authors suggest using a randomized yet ex-
act (not approximate) Fortran algorithm by Kachitvichya-
nukul and Schmeiser [34]. It should be noted that the al-
gorithm relies on infinite precision floating-point numbers,
which most regular frameworks do not have. The security
consequences of finite precision computations is actually an
open question. The complexity of this randomized algorithm
is hard to analyze; however, we empirically verified that its
running time is no worse than linear in the input bit length.
The authors also suggest a different algorithm for smaller
inputs [61].

On average, encryption and decryption algorithms make
n calls to HG, which in turn consumes entropy generated
by the internal PRG. The entropy, and thus the number of
calls to PRG, needed for one HG run is hard to analyze the-
oretically. However, we derived this number experimentally
(see Section 5).

BCLO has been implemented in numerous languages and
has been deployed in a number of secure systems. We add
C# implementation to the list, and recommend using a li-
brary that supports infinite precision floating-point numbers
when building the hypergeometric sampler.

3.2 CLWW ORE
The ORE scheme by Chenette et al. [19], which authors

call “Practical ORE”, is the first efficient ORE implemen-
tation based on PRFs.

On encryption, the plaintext is split into n values in the
following way. For each bit, a value is this bit concatenated

3



Scheme
Primitive usage Cipher size, or Leakage

Encryption Comparison state size (In addition to inherent total order)

BCLO [9] n HG none 2n ≈ Top half of the bits

CLWW [19] n PRF none 2n Most-significant differing bit

Lewi-Wu [45]

2n/d PRP
n
2d

Hash n
d

(
λ+ n+ 2d+1

)
+ λ Most-significant differing block2n

d

(
2d + 1

)
PRF

n
d

2d Hash

CLOZ [16]
n PRF

n2 PPH n · h Equality pattern of most-significant differing bitn PPH
1 PRP

FH-OPE [38] 1 Traversal 3 Traversals 3 · n ·N Insertion order

Table 1: Primitive usage by OPE / ORE schemes. Ordered by security rank — most secure below. n is the input length in
bits, d is a block size for Lewi-Wu scheme, λ is a PRF output size, N is a total data size, HG is hyper-geometric

distribution sampler, PPH is property-preserving hash with h-bit outputs built with bilinear maps and bolded are weak
points of the schemes.

with all less significant bits. This value is given to a keyed
PRF and the result is added to the next more significant
bit. This resulting list of n elements is the ciphertext.

The comparison is trivial. The algorithm compares two
lists traversing them in-order looking for the case when one
value is greater than the other by exactly one. This would
mean that the first differing bit is found. If no such index
exists, the plaintexts are equal.
Security. A generic ORE security definition was intro-
duced along with the scheme [19]. ORE leakage is more
clearly quantified than in OPE. The definition says that
the scheme is secure with a leakage L(·) if there exists an
algorithm (simulator) that has access to the leakage func-
tion and can generate output indistinguishable from the one
generated by the real scheme. This scheme satisfies ORE
security definition with the leakage L(·) of the location and
value of the first differing bit of every pair of plaintexts.
Note that the most significant differing bit also leaks the
approximate distance between two values. For example, if
the most significant differing bit is the last bit, then the
plaintexts’ difference is one.

Analysis and implementation challenges
On encryption the algorithm makes n calls to PRF and the
comparison procedure does not use any cryptographic prim-
itives. Ciphertext is a list of length n, where each element
is an output of a PRF modulo 3. The authors claim that
the ciphertext’s size is n log2 3, just 1.6 times larger than the
plaintext’s size. While this may be true for large enough n
if ternary encoding is used, we found that in practice the
ciphertext size is still 2n. 1.6n for 32-bit words is 51.2 bits,
which will have to occupy one 64-bit word, or two 32-bit
words, therefore resulting in 2n anyway.

3.3 Lewi-Wu ORE
Lewi and Wu [45] introduced an improved version of CLWW

[19] which leaks strictly less.
The novel idea was to use the “left / right framework” in

which two ciphertexts get generated — left and right. The
right ciphertexts are semantically secure, so an adversary
will learn nothing from them. Comparison is only defined

between the left ciphertext of one plaintext and the right
ciphertext of another plaintext.

The approach is to split the plaintext into the blocks of
certain number of bits. Next, apply CLWW [19] procedure
to blocks. Within one block, the algorithm computes all
possible permutations of values, hashes them and adds the
result of the comparison between the value and the non-
permuted block value. This way the location of the differing
bit inside the block is hidden, but the location of the first
differing block is revealed.

Comparison recomputes the hashes for each block and ver-
ifies that any of them have the property that one is greater
than the other by one.
Security. This scheme satisfies the ORE security definition
introduced by Chenette et al. [19] with the leakage L(·) of
the location of the first differing block. This property allows
a practitioner to set performance-security tradeoff by tuning
the block size. Left / right framework is particularly useful
in a B+ tree since it is possible to store only one (seman-
tically secure) ciphertext in the structure (see Section 4.1).

Analysis and implementation challenges
Let n be the size of input in bits (e.g. 32) and d be the
number of bits per block (e.g. 2).

Left encryption loops n
d

times making one PRP call and

two PRF calls each iteration. Right encryption loops n
d

2d

times making one PRP call, one hash call and two PRF calls
each iteration. Comparison makes n

d
calls to hash at worst

and half of that number on average. Please note that the
complexity of right encryption is exponential in the block
size. In the Table 1 the PRP usage is linear due to our
improvement.

Assume PRF output size is λ. Left ciphertext size is there-
fore n

d
(λ+n). Right ciphertext size is λ+ n

d
2d+1. The total

ciphertext size is then n
d

(
λ+ n+ 2d+1

)
+ λ.

The implementation details of this approach has an inter-
esting security question. Although the authors suggest using
3-rounds Feistel networks [56] for PRP and use it in their
implementation, it may not be secure for small input sizes.
Feistel networks security depends on the input size [30] —
exponential in the inputs size. However, the typical input
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for PRP in their scheme is 2–8 bits, thus even exponential
number is small.

We have considered multiple PRP implementations to use
instead of the Feistel networks. We have found that Knuth
shuffle algorithm [42] fits particularly well. It is secure for
any input size, and its performance, although degrades with
input size, is acceptable for small inputs. Another impor-
tant aspect of the implementation is that for each block we
need to compute the permutation of all the values inside the
block. This operation applied many times can be expensive.
To address this, we propose to generate a PRP table once
for the whole block and then use this table when you need
to compute the location of an element of permutation. This
can reduce the PRP usage (indeed, we observe a reduction
from 80 to 32 calls in our case.) We evaluate this improved
approach in our experimental section.

3.4 CLOZ ORE
Cash et al. [16] introduced a new ORE scheme that prov-

ably leaks less than any previous scheme. Their construction
uses bilinear maps for a new primitive they have defined,
which allows to hide the first differing bit.

The idea is to use Chenette et al. [19] construction, but
permute the list of PRF outputs. It is not necessary to
know the original order of those outputs, as one can simply
find a pair where one element is greater than the other by
one. This is not enough to reduce leakage, however, since
an adversary can count how many elements two ciphertexts
have in common.

To address this problem, the authors define a new primi-
tive they call a property-preserving hash (PPH).

A PPH as defined in [16] should be instantiated with a
predicate (property) on two elements of the domain. PPH
Test will then output 1 if the predicate is true for the orig-
inal elements, and false otherwise. For the purposes of this
scheme, the predicate we are interested in is y = x + 1, or
testing if the first element is greater than the second by 1.

Informally, PPH is correct if PPH Test routine is correct,
and PPH is secure if an adversary cannot distinguish a real
PPH from a fake one without the secret key. Please refer
to the original paper [16] for formal correctness and security
definitions.

Equipped with the PPH primitive, the authors “hash” the
elements of the ciphertexts before outputting them. Due to
security of PPH, the adversary would not be able to count
how many elements two ciphertexts have in common, thus,
would not be able to tell the location of differing bit.
Security. The strong side of the scheme is its security. The
scheme leaks L(·) an equality pattern of the most-significant
differing bits (satisfying Chenette et al. [19] definition). As
defined in [16], the intuition behind equality pattern is that
for any triple of plaintexts m1, m2, m3, it leaks whether
m2 differs from m1 before m3 does. We do not know of
any attacks against this construction (partially because no
implementation exists yet, see next subsection), but it is
inherently vulnerable to frequency attacks that apply to all
frequency-revealing ORE schemes (see Section 2).

Analysis and implementation challenges
On encryption, the scheme makes n calls to PRF, n calls
to PPH Hash and one call to PRP. Comparison is more
expensive, however, as the scheme makes n2 calls to PPH

Test. Ciphertext size depends on PPH implementation and
is equal to n times the PPH hash size.

The scheme has two limitations that make it impractical.
The first one is the square number of calls to PPH, which is
around 1024 for a single comparison.

The second problem is the PPH itself. Authors suggest a
construction based on bilinear maps. Hash of an argument
is an element of a group, and the test algorithm is comput-
ing a pairing. This operation is very expensive — order of
magnitude more expensive than any other primitive we have
implemented for other schemes.

We have implemented the scheme in C++ using PBC li-
brary [49] to empirically asess schemes’s performance and
on our machine (see Section 5), a single comparison takes
1.9 seconds on average. Although we have produced the first
(correct and secure) real implementation of this scheme in
C++, it is infeasible to use it in the benchmark (it will take
years to complete a single run). Therefore, for the purposes
of our benchmark, we implemented a “fake” version of PPH
— correct, but insecure, which does not use pairings. Con-
sequently, in our analysis we did not benchmark the speed
of the scheme, but measured all other data.

3.5 FH-OPE
Frequency-hiding OPE by Kerschbaum [38] is a stateful

scheme that hides the frequency of the plaintexts — adver-
sary would not be able to construct a frequency histogram.

This scheme is stateful, which means that the client needs
to keep a data structure and update it with every encryption
and decryption. The data structure is a binary search tree
where the node’s value is the plaintext and node’s position
in a tree is the ciphertext. For example, consider the range
[1, 128]. The first any plaintext, let it be 6, will be the root,
and thus the cipher is 64. Then any plaintext smaller than
the root 6, say 3, will become the left child of the root, and
will produce the ciphertext 32.

To encrypt a value, the algorithm traverses the tree un-
til it finds a spot for the new plaintext, or finds the same
plaintext. If the same plaintext is found, in order to hide
the frequency, the algorithm tosses a coin and goes left or
right depending on the outcome up to the leaf. This way,
the invariant of the tree — intervals of the same plaintexts
do not overlap — is maintained. The ciphertext generated
from the new node’s position is returned.

The property that every duplicate plaintext will have a
new pseudo-random ciphertext makes the scheme random-
ized. Therefore, the comparison algorithm is more compli-
cated than in the regular deterministic OPE.

To properly compare ciphertexts, the algorithm needs to
know the boundaries — the minimum and maximum cipher-
texts for a particular plaintext. The client is responsible for
traversing the tree to find the plaintext for the ciphertext
and then minimum and maximum ciphertext values. Hav-
ing these values, the comparison is trivial — equality is a
check that the value is within the boundaries, and other
comparison operators are similar.

Authors have designed a number of heuristics to minimize
the state size, however, these are mostly about compacting
the tree and the result highly depends on the tree content. In
our analysis, we consider the worst case performance with-
out the use of heuristics. In our experimental evaluation,
however, we did implement compaction.
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Protocol
I/O requests

Leakage
Communication (result excluded)

Construction Query Construction Query

B+ tree with ORE logB
N
B

logB
N
B

+ r
B

Same as ORE 1 1

Kerschbaum [40]
N

B
log2

N
B

+ r
B

Total order log2N log2N

POPE [55] cold
1

N/B Fully hiding
1

N
POPE [55] warm logL

N
B

+ r
B

Partial order logLN

Logarithmic-BRC [21] — r Same as SSE — log2N

ORAM log2 N

B
log2

N

B

(
logB

N

B
+

r

B

)
Fully hiding

log2 N

B
log2 N

B(access pattern)

Table 2: Performance of protocols. Ordered by security rank — most secure below. N is a total data size, B is an I/O page
size, L is a POPE tree branching factor, r is the result size in records and bolded are weak points of the protocols. All

values are in O notation.

Security. The security of the scheme relies on the large
range size to domain size ratio. Authors recommend at
least 6 times longer ciphertexts than the plaintexts in bit-
length, which means ciphertexts should be 192-bit numbers
that are not commonly supported. It is possible to operate
over arbitrary-length numbers, but the performance over-
head would be substantial. We did a quick micro-benchmark
in C# and the overhead of using BigInteger is 15–20 times
for basic arithmetic operations.

This scheme satisfies IND-FAOCPA definition (introduced
along with the scheme [38]), meaning that it does not leak
the equality pattern or relative distance between the plain-
texts. This definition has been criticized in [50], who claim
that the definition is imprecise and propose the enhanced
definition along with a small change to construction to sat-
isfy this new definition. Both schemes leak the insertion
order, because it affects the tree structure. We do not know
of any attacks against this leakage, but it does not mean
they cannot exist. Grubbs et al. [28] describe an attack
against this scheme (binomial attack), but it applies to any
perfectly secure (leaking only total order) frequency-hiding
OPE.

Analysis and implementation challenges
If the binary tree grows in only one direction, at some point
it will be impossible to generate another ciphertext. In this
case, the tree has to be re-balanced. This procedure will
invalidate all ciphertexts already generated. However, the
client can still generate new ones by manipulating its state.
This property makes the scheme difficult to use in some
protocols since they usually rely on the ciphertexts on the
server being always valid. The authors explicitly mention
that the scheme works under the assumption of uniform in-
put. However, the re-balancing will be caused by insertion
of just r+1 sequential data points for r being the range size
in bits, which means that 65 consecutive input elements is
enough for 64-bit integer range.

The scheme makes one tree traversal on encryption and
decryption. Comparison is trickier as it requires one traver-
sal to get the plaintext, and two traversals for minimum and
maximum ciphertexts. We understand that it is possible to
get these values in fewer than three traversals, but we did
not optimize the scheme for the analysis and evaluation.

For practitioners we note that the stateful nature of the
scheme implies that the client storage is no longer negligible

as the state grows proportionally to the number of encryp-
tions. We also note that implementing compaction exten-
sions will affect code complexity and performance. Finally,
we stress again that some inputs — namely all non-uniform
inputs — can break the scheme by causing all ciphertexts
to be invalid. It is up to the users of the scheme to ensure
uniformity of the input, which poses serious restrictions on
the scheme usage.

4. SECURE RANGE QUERY PROTOCOLS
We proceed by describing and analyzing the range query

protocols we have chosen. For the purposes of this paper, a
secure search protocol is defined as a client-server commu-
nication involving construction and search stages. Commu-
nication occurs between a client, who owns some sensitive
data, and an honest server, who securely stores it. In con-
struction stage, a client sends the server the encrypted data
points (index-value tuples) and the server stores them in
some internal data structure. In search stage, a client asks
the server for a range (usually specifying it with encrypted
endpoints) and the server returns a set of encrypted records
matching the query. Note that the server may interact with
the client during both stages (e.g. ask the client to sort a
small list of ciphertexts). Also note that we do not allow
batch insertions as it would limit the use cases (e.g. client
may require interactive one-by-one insertions).

The first protocol is a family of constructions where a data
structure (B+ tree in this case) uses ORE schemes internally.
Following are the alternative solutions with varying perfor-
mance and security profiles, not relying on ORE. Final sub-
section introduces two baseline solutions we will use in the
benchmark — best performance and maximal security.

4.1 Search protocol from ORE
So far we have analyzed OPE and ORE schemes without

much context. One of the best uses of an ORE is within a
secure protocol. In this section we provide a construction of
a search protocol built with a B+ tree working on top of an
ORE scheme and analyze its security and performance.

The general idea is to consider some data structure that
is optimized for range queries, and to modify it to change all
comparison operators to ORE scheme’s Cmp calls. This way
the data structure can operate only on ciphertexts. Perfor-
mance overhead would be that of using the ORE scheme’s
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Cmp routine instead of a plain comparison. Space overhead
would be that of storing ciphertexts instead of plaintexts.

In this paper, we have implemented B+ tree [4] (with a
proper deletion algorithm [33]) as a data structure.

B+ tree is a good choice for underlying data structure
because all its operations — insertions, updates, searches
and deletions — require nothing beyond ordering of its el-
ements. Moreover, these operations require comparisons of
arguments to already inserted elements, thus enabling the
use of “left / right framework”.

For protocols, we also analyze the I/O performance and
the communication cost. In particular, we are interested in
the expected number of I/O requests the server would have
made to the secondary storage, and the number and size of
messages parties would have exchanged.

The relative performance of the B+ tree depends only on
the page capacity (ciphertexts are larger than the plaintexts
and therefore the B+ tree will have smaller branching fac-
tor). Therefore, the query complexity is:

O (logB (N/B) + r/B)

where B is the number of records (ciphertexts) in a block,
N is the number of records (ciphertexts) in the tree and r is
the number of records (ciphertexts) in the result (none for
insertions).

Communication volume of the protocol is relatively small.
For insertions, the client transfers one ciphertext in one mes-
sage. For queries, the client transfers two ciphertexts in one
message, and gets one message of result size back.
Security. The leakage of this protocol consists of leakage
of the underlying ORE scheme plus whatever information
about insertion order is available in the B+ tree. Please
note that Lewi-Wu [45] ORE is particularly well-suited in
this construction with its left / right framework. In this
case, the ORE leakage becomes only the total order and the
security of the protocol is comparable with other non-ORE
constructions.

4.2 Kerschbaum-Tueno
Kerschbaum and Tueno [40] proposed a new data struc-

ture, which satisfies their own definitions of security (IND-
CPA-DS) and efficiency (search operation has poly-logarithmic
running time and linear space complexity).

In short, the idea is to maintain a (circular) array of sym-
metrically encrypted ciphertexts in order. On insertion, the
array is rotated around a uniformly sampled offset to hide
the location of the smallest element. Client interactively
performs a binary search requesting an element, decrypting
it and deciding which way to go.
Security. Authors prove that this construction is IND-
CPA-DS secure (definition introduced in the same paper [40]).
The definition assumes an array data structure and there-
fore serves specifically this construction (as opposed to being
generic). It provably hides the frequency due to semantic en-
cryption and hides the location of the first element due to
random rotations. Leakage-wise this construction is strictly
better than B+ tree with ORE — they both leak total order,
but [40] hides distance information and smallest / largest el-
ements. Specifically, for all pairs of consecutive elements ei
and ei+1 it is revealed that ei+1 ≥ ei except for one pair of
smallest and largest element in the set.

4.2.1 Analysis and implementation challenges

Insertions are I/O-heavy because they involve rotation of
the whole data structure. All records will be read and writ-
ten, thus the complexity is O (N/B). Searches are faster
since they involve logarithmic number of blocks. The first
few blocks can be cached and the last substantial number of
requests during the binary search will target a small number
of blocks. The complexity is then O (log2

N/B).
Communication volume is small as well. Insertion requires

log2N messages from each side. Searches require double
that number because separate protocol is run for both end-
points. Inherently, the response is sent in a single message.

The data structure is linear in size, and the client storage
is always small. Sizes of messages are also small as only a
single ciphertext is usually transferred.

For practitioners we have a few points. The construction
in the original paper [40] contains a typo as m and m′ must
be swapped in the insertion algorithm. Also, we have found
some rare edge cases; when duplicate elements span over the
modulo, the algorithm may not return the correct answer.
Both inconsistencies can be fixed however. This protocol
is not optimized for I/O operations for insertions, and thus
would be better suited for main memory datasets.

4.3 POPE
Roche et al. [55] presented a protocol, direct improve-

ment over mOPE [53], which is particularly suitable for large
number of insertions and small number of queries. The con-
struction is heavily based on buffer trees [3] to support fast
insertion and lazy sorting.

The idea is to maintain a POPE tree on the server and
have the client manipulate that tree. POPE tree is similar
to B-tree, in that the nodes have multiple children and nodes
are sorted on each level. Each node has an ordered list of
labels of size L and an unbounded unsorted set of encrypted
data called buffer. Parameter L controls the list size, the
leaf’s buffer size, and the size of client’s working set. The
insertion procedure simply adds an encrypted piece of data
to the root’s buffer.

The query procedure is more complex. To answer a query,
the server interacts with the client to split the tree according
to the query endpoints. On a high level, for each endpoint
the buffers are cleared (content pushed down to leaves), and
nodes in the paths are split. After that, answering a query
means sending all ciphertexts in all buffers between the two
endpoint leaves.

The authors provide cost analysis of their construction.
Insertions are always cheap — one round is needed to send
an element to the server. Search operations are expected to
require O (logL n) rounds. It must be noted that the first
queries will require many more rounds, since large buffers
must be sorted.
Security. This construction satisfies the security defini-
tion of frequency-hiding partial order preserving (FH-POP)
protocol (introduced in the paper [55]). According to The-
orem 3 from [55], after n insertions and m query operations
with local storage of size L, where mL ∈ o(n), the POPE
scheme is a frequency-hiding partial-order-preserving with

Ω
(

n2

mL logL n
− n

)
incomparable pairs of elements. Simply

put, the construction leaks pairwise order of a bounded num-
ber of elements. Aside from this, the construction provably
hides the frequency (i.e. equality) of the elements.

4.3.1 Analysis and implementation challenges
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Protocol
Communication per operation (result excluded)

I/O requests (result included) Volume (messages) Size (bytes)

Construction Query Construction Query Construction Query

B+ tree w. ORE 3 44 2 2 177 342

Kerschbaum [40] 494 7 40 86 671 1453

POPE [55] cold
1

2175
2

497722
32

9056644
POPE [55] warm 300 914 43331

Logarithmic-BRC [21] — 40 1 2 — 391

ORAM 31 185 143 490 18254 62662

Table 3: Simulation result for protocols’ performance values

In our analysis we count each request-response commu-
nication as a round. This is different from [55] where they
use streaming a number of elements as a single round. The
rationale for our approach is that if we allow persistent chan-
nels additionally to messages, then any protocol can open a
channel for each operation. Thus, we do not allow channels
for all protocols in our analysis.

Also, as noted by authors, if L = nε for 0 < ε < 1, then
the amortized costs become O (1). While this is true, in our
analysis the choice of L depends on the storage volume block
size for I/O optimizations, instead of the client’s volatile
storage capacity. Thus, the costs remain logarithmic.

Insertion bandwidth is constant and small — one cipher-
text is transferred. Search bandwidth depends heavily on
the current state of the tree. When the tree is completely un-
sorted (the first query), all elements of the tree will be trans-
ferred to split the large root, then possibly internal node will
have to be split requiring sending of N

L
elements, and so on,

thus O (N + r). When the tree is completely sorted (after a
large number of uniform queries), the bandwidth will be sim-
ilar to that of a standard B+ tree — O (L logLN + r). The
average case is hard to compute; however, authors prove an
upper bound on bandwidth after n insertions and m queries
— O (mL logL n+ n logLm+ n logL(lnn)).

POPE tree is not optimized for I/O the way B-tree is. In-
sertion requires a single I/O request for the block where the
server appends the element. Search complexity is more com-
plex to analyze as is bandwidth complexity. In the worst-
case (first query), all blocks need to be accessed O

(
N
B

+ r
B

)
.

In the best-case all nodes occupy exactly one block and I/O
complexity is the same as with B+ tree O

(
logL

N
B

+ r
B

)
.

The average case is in between and matters get worse as
the node is not guaranteed to occupy a single block due to
arbitrary sized buffers.

Client’s persistent storage is negligibly small — it stores
the encryption key. Volatile storage is bounded by L.

For practitioners we present a number of things to con-
sider. Buffer within one node is unsorted, so in the worst-
case, L-sized chunks remain unordered. Due to this prop-
erty, the query result may contain up to 2(L− 1) extra en-
tries, which the client will have to discard from the response.

The first query after a large number of insertions will re-
sult in client sorting the whole N elements, and thus, POPE
has different performance for cold and warm start. Also,
even to navigate an already structured tree, the server has
to send to the client the whole L elements and ask where to
go on all levels.

Furthermore, [55] does not stress the fact that after al-
ternating insertions and queries, it may happen that some
intermediate buffers are not empty, thus returning buffers
between endpoints must include intermediate buffers as well.
The consequence is that the whole subtree is traversed be-
tween paths to endpoints, unlike the B+ tree case when only
leaves are involved.

Finally, POPE tree is not optimized for I/O operations.
Even if L is chosen so that the node fits in the block, only
leaves and only after some number of searches will optimally
fit in blocks. Arbitrary sized buffers of intermediate nodes
and the lack of underflow requirement do not allow for I/O
optimization.

4.4 Logarithmic-BRC using SSE
Demertzis et al. [21] introduced a novel protocol called

“Logarithmic-BRC” whose I/O complexity depends only on
the result size, regardless of the database size. The core
primitive for their construction a Symmetric Searchable En-
cryption (SSE) scheme. An SSE scheme is a server-client
protocol in which the server stores a specially encrypted
keywords-to-documents map, and a client can query doc-
uments with keywords while the server learns neither key-
words nor the documents (although there is access pattern
leakage). Note that the map stores short document identi-
fiers instead of actual documents, and we will use the term
“documents” to mean “document identifiers” in this section.

The construction treats record values as “documents” and
index ranges as “keywords” so that records can be retrieved
by the ranges that include them. Specifically, a client builds
a virtual binary tree over the domain of indices and assigns
each record a set of keywords, which is the path from that
record to the root. This way, the root keyword is associated
with all documents and the leaf keyword is associated with
only one record.

Upon query, a client computes a cover — a set of nodes
whose sub-trees cover the requested range. A client sends
these keywords to the SSE server, which returns encrypted
documents — result values. Of the several covering tech-
niques suggested in the protocol [21] we have chosen the
Best Range Cover (BRC), because it results in fewest nodes
and does not return false-positives. Kiayias et al. [41] have
proven that the worst-case number of nodes for domain of
size N is O (logN) and presented an efficient BRC algo-
rithm.
Security. In a snapshot setting, this construction’s security
is that of SSE. We have used [15] and [14] SSE schemes and
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their leakage in a snapshot setting is the database size and
at most some initialization parameters. Security of modern
SSE is high enough to call them fully hiding in our setting.
We remind that we consider only a snapshot model. Addi-
tional access pattern leakage comes up during queries; exact
implications of this leakage remain an open research prob-
lem.

4.4.1 Analysis and implementation challenges
Communication involves a client sending at worst log2N

keywords and server responding with the exact result.
For each keyword in the query set, server will query SSE,

which will return r documents. Therefore, server’s I/O com-
plexity is that of SSE.

Authors have used [15] SSE scheme in their implemen-
tation, but we have found it unacceptably slow it terms of
I/O. Instead we have implemented an improved scheme [14],
which directly addresses I/O optimization. We have imple-
mented both schemes and have run the protocol with both
of them and can confirm the two orders of magnitude im-
provement in I/O.

Both SSE schemes’ I/O complexity is linear with the re-
sult size r. Cash et al. [14] scheme makes at most one I/O
per result document in the worst-case and suggests exten-
sions to significantly improve I/O complexity. We have im-
plemented their pack extension, which packs documents in
blocks to fit the I/O pages.

Logarithmic-BRC is perfectly scalable as its performance
does not depend on total data size and only degrades with
the result size. Storage overhead, however, is significant.
Each record is associated with the whole path in the binary
tree — log2N nodes (keywords). The storage complexity is
therefore O (N logN), and the overhead is then a factor of
logN .

Updates, while addressed in the original protocol, are im-
practical. Authors suggest using bulk-loading for updates,
maintaining merge trees and requiring the client to do a
merge once in a while. I/O complexity of such approach is
unclear. In our implementation we perform the construc-
tion stage only in batch mode. We also emphasize that the
update routine was not implemented for evaluation in the
original paper.

4.5 The two extremes
To put the aforementioned protocols in a context we intro-

duce the baselines — an efficient and insecure construction
we will refer to as no encryption and maximal security pro-
tocol we refer to as ORAM.

4.5.1 No encryption
This protocol is a regular B+ tree [4] without any ORE

in it. It is the construction one can expect to see in almost
any general-purpose database.

In terms of security it provides no guarantees — all data
is in the clear. In terms of efficiency it is optimal. B+ tree
data structure is optimal in I/O usage, indices inside nodes
are smallest possible (integers) and there is no overhead in
comparing elements inside the nodes as opposed to working
with ORE ciphers. We present this protocol as a baseline
solution in terms of efficiency over security.

4.5.2 ORAM

Oblivious RAM (ORAM) is a construction that addition-
ally to semantic security of a snapshot setting (see Section 2)
provably hides the access pattern — a sequence of reads
and writes to particular memory locations. With ORAM
an adversary would not be able to recognize a series of ac-
cesses to the same location and will not differentiate reads
versus writes. ORAM was introduced by Goldreich and Os-
trovsky [26] who also proved its lower bound (strengthened
in [44]) — logarithmic overhead per request. A number of
efficient ORAM constructions were designed (see [18] for a
good survey) and we use the state-of-the-art construction,
PathORAM [58].

A generic ORAM server responds to read and write re-
quests for a particular address. In our baseline protocol we
store B+ tree nodes in ORAM. A client works with the tree
as it normally would except each time it needs to access a
node, it communicates with ORAM.

In terms of security this protocol fully hides in the snap-
shot model and provably hides access pattern. We note that
one can improve security even further by adding noise to the
result obscuring communication volume. It is possible to
use differential privacy to provably hide the volume, but it
is outside of scope of this work. We also note that a practi-
tioner can use a similar protocol with ORAM replaced with
a trivial data store and have the tree nodes encrypted. It
would be fully hiding in a snapshot setting, but we prefer
the baseline that covers more than only the snapshot model.

In terms of performance this construction incurs some no-
ticeable overhead. Regardless of specific ORAM being used,
each access incurs at least logarithmic overhead according to
lower bounds [26]. Combined with logarithmic complexity
of the B+ tree itself, the complexity, both I/O and com-
munication, is O

(
log2N

)
. Particular values depend on the

specific construction. We found that PathORAM has good
I/O performance, because its internal tree structure trans-
lates into good cache affinity.

We present this protocol as a baseline solution in terms
of security over efficiency. We have not implemented stand-
alone PathORAM, but rather a simulator which correctly
reports I/O, communication and primitive usage. Surpris-
ingly, we found that ORAM protocol’s overhead, although
higher than in ORE-based protocols, is in-line with the most
secure protocols in our benchmark.

5. EVALUATION
All experiments were conducted on a single machine. We

use macOS 10.13.6 with 8-Core 3.2GHz Intel Xeon W pro-
cessor, 32 GB DDR4 ECC main memory and 1 TB SSD
disk. The main code is written in C# and runs on .NET
Core 2.1.3.

Interactive website
Additionally to making our source code, compiled binaries
and Docker images available, we want to let researchers
interactively run small-sized simulations. We host a web-
site [8] where one can select a protocol (including baselines,
CLOZ and both SSE schemes), cache size and policy and
I/O page parameter; supply one’s own data and query sets,
and run the simulations. Simulations are run one at a time
and usually complete within seconds. The user is then able
to view the result — tables, plots, values and raw JSON,
which we used to build plots for this paper. Input size on
the website is limited for practical purposes and users are
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encouraged to run arbitrary-size simulations using our bina-
ries or Docker images.

5.1 Implementation
We have implemented most of the primitives, data struc-

tures, and constructions ourselves. For some primitives and
all schemes we provided the first open-sourced cross-platform
C# implementation. We note that neither primitives, nor
schemes are production-ready; however, we believe they can
be used in research projects and prototypes. We also em-
phasize that the B+ tree implementation we are using, al-
though our own with instrumentation in it, is not custom
in any way, but rather standard as defined in the original
paper [4] with deletion algorithm by [33].

This software project is documented and tested (over 97%
coverage). All code including primitives, data structures,
schemes, protocols, simulation logic, benchmarks, build scripts
and tests is published on GitHub [7] under CC BY-NC 4.0 li-
cense. Additionally, we have published parts of the projects
as stand-alone .NET Core (nuGet) packages, and we host a
web-server where users can run simulations for small inputs
(Section 5).

5.1.1 Primitives
All schemes and protocols use the same primitives most

of which we implemented ourselves. All primitives rely on
the default .NET Core AES implementation. .NET Core
uses platform-specific implementation of AES, thus lever-
ages AES-NI instruction. In our project all keys’ sizes are
128 bits, as is AES block size.

The most used primitive is a pseudo-random generator
(PRG). We implemented AES-based PRG which uses AES
in CTR mode and caches unused entropy. This way we can
supply seed as large as 128 bits (AES key). PRG generates
entropy in 128 bits chunks, and if only a fraction of the
entropy is requested, the residue is carried over to the next
call. When converting entropy to integers, we use techniques
to reduce bias (e.g. discarding the entropy in some cases).

The second most used primitive is a PRF. We imple-
mented it using AES without initialization vector in ECB
mode. Since we used a single block, this approach is still
secure. For symmetric encryption we use AES with initial-
ization vector in CBC mode. For hash we use default .NET
Core SHA2 implementation. If keyed hash is used, we push
the input through a PRF before supplying it to SHA2.

For pseudo-random permutation (PRP) we have two im-
plementations. We implemented unbalanced Feistel net-
works [56] using our PRF and .NET Core BitArray class.
We have a regular (3 round) and strong (4 rounds) version.
The second implementation of PRP is for small inputs. We
generate a permutation table using Knuth shuffle [42] and
cache it for the next call. This implementation is more se-
cure for small inputs and is optimized if the whole permu-
tation is needed. Both schemes (Lewi-Wu and CLOZ) that
use PRP, use the Knuth shuffle implementation because of
the small inputs.

BCLO [9] relies on special primitives. We implemented
LF-PRF (TapeGen in [9]) using our implementations of PRF
and PRG as suggested in [9]. For implementation of hyper-
geometric sampler we used algorithm [34] and code from
GitHub [54].

5.1.2 Schemes and protocols

Scheme Encryption Comparison Size (bits)

BCLO [9] 41 HG none 64

CLWW [19] 32 PRF none 64

Lewi-Wu [45]
32 PRP

9 Hash 2816160 PRF
64 Hash

CLOZ [16]
32 PRF

1046 PPH 409632 PPH
1 PRP

FH-OPE [38] 1 Traversal 1 Traversal 86842

Table 4: Simulation result for ORE schemes primitive usage

We implemented schemes and protocols precisely as in the
original papers. When we found problems or improvements,
we put those in implementation challenges notes, but did
not alter the original designs in our code, unless explicitly
stated. Each ORE scheme implements a C# interface; thus
our own implementation of B+ tree operates on a generic
ORE. For no encryption baseline, we have a stub imple-
mentation of the interface, which has identity functions for
encryption and decryption. It is important to note that all
schemes and protocols use exclusively our implementations
of primitives. Thus we rule out the possible bias of one
primitive implementation being faster than the other.
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Figure 1: Schemes and primitives benchmarks

5.1.3 Simulations
We have four types of simulations.
Protocol simulation runs both protocol stages — construc-

tion and search — on supplied data for all protocols includ-
ing all schemes coupled with B+ tree. In this simulation we
measure the primitive usage, number of ORE scheme oper-
ations (when applies), communication volume and size, and
the number of I/O requests. We intentionally do not mea-
sure elapsed time, since it would be extremely inaccurate
in this setting — simulation and measurement routines take
substantial fraction of time.

Scheme simulation runs all five ORE schemes and tracks
only the primitive usage.

The scheme benchmark, however, is designed to track
time. We use Benchmark.NET [1] to ensure that reported
time is accurate. This tool handles things like cold / warm
start, elevating process’ priority, and performing enough
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Figure 2: Performance values for different data distributions

runs to draw statistically sound conclusions. This bench-
mark reports elapsed time up to nanoseconds for all four
schemes (excluding CLOZ) and their variants.

Finally, primitive benchmark uses the same tool, but bench-
marks the primitives. We use it to compare different imple-
mentations of primitives (e.g. Feistel PRP vs pre-generated
permutation) and to have basis to approximate scheme and
protocol time consumption based on primitive usage.

Simulation and benchmark routines are documented, tested
and published as the rest of the software.

5.2 Setup
For our simulations, we have used three datasets. Two

synthetic distributions, that are uniform (range is 500) and
normal (with mean 0 and standard deviation 10). The real
datasets is California public employees salaries [60] (“total
pay and benefits” column). Synthetic datasets and subsets
of the real dataset are generated pseudo-randomly.

5.3 Results

5.3.1 Primitive usage by schemes
In Table 4 we show the simulation-derived values of each

OPE and ORE scheme’s primitive usage. Each scheme is
given 1000 data points of each dataset. First, scheme en-
crypts each data point, then decrypts each ciphertext and
then performs five comparisons (all possible types) pairwise.
This micro-simulation is repeated 100 times. Resulting val-
ues for primitive usage are averaged for each scheme. State

and ciphertext sizes are calculated after each operation and
the values are averaged.

The FH-OPE number of traversals for comparison is one
since endpoints are found once and then five comparisons
are made for the same two ciphertexts. The FH-OPE state
size is smaller than expected due to compactions described
in [38]. Ciphertext size of CLOZ assumes that the output
size of PPH hash is 128 bits. Please note that the simulated
values are consistent with the theoretical calculations.

5.3.2 Benchmarks of schemes and primitives
Using the Benchmark.NET tool [1], we have accurately

tracked the performance of the schemes and primitives run-
ning of different parameters (see Figure 1). On each run,
ORE schemes were supplied 100 numbers and they encrypted
them, compared each one with the next one (all five compar-
ison operators) and decrypted them. Primitives were given
randomly generated byte inputs and keys of different sizes
(e.g. PRP of 2 to 32 bits). Benchmark.NET decides how
many times to run the routine to get statistically sound re-
sults. For example, large variance results in more runs. To
improve the accuracy, each run is compiled in release mode
as separate project and runs in a separate process with high-
est priority.

Please note the logarithmic scale of schemes’ performances.
FH-OPE is fast since it does not perform CPU-heavy oper-
ations and works in main memory. CLWW is the fastest
stateless scheme. Its comparison is so simple that it works
almost as fast as regular integer comparison. Lewi-Wu per-
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formance degrades exponentially with the increase of block
size mainly due to exponential number of PRF executions
and the performance of PRP degrading exponentially. Note
also that Lewi-Wu comparison takes noticeable time due to
Hash primitive usage.

In primitives benchmark it is clear that most primitives
use AES under the hood. PRG and PRF take less than AES
because they do not include initialization vector generation
needed for symmetric encryption. PRP is implemented as a
Knuth shuffle [42] and its complexity is exponential in input
bit length. Input size of 2 bits is shown on Figure 1. Both
PRG and PRP make use of internal cache in our implemen-
tations. PRG does not discard the entropy generated by
AES cycle, so one AES cycle can supply four 32-bit inte-
gers. PRP generates the permutation table once and does
not regenerate it if the same key and number of bits are
supplied. Hypergeometric sampler uses PRG internally and
therefore its performance depends heavily on the PRG im-
plementation. From this plot it is clear why a linear number
of sampler usage in BCLO may be better than exponential
number of PRP usage in Lewi-Wu.

5.3.3 Protocols
In this experiment we have run each protocol with each

of the three datasets. Dataset sizes are 247000 (bounded
by California Employees dataset size) and the number of
queries is 1000. Queries are generated uniformly at random
with a fixed range — 0.5% of data range. The cache size is
fixed to 128 blocks, and the B+ tree branching factor as well
as block sizes for other protocols are set such that the page

size is 4 kilobytes. It effectively means that BCLO, CLWW
and FH-OPE branching factors are 512, Lewi-Wu gets 11,
CLOZ gets 8 and no encryption gets 1024. Kerschbaum
with POPE get 256 elements per page, logarithmic-BRC
gets 128 and ORAM gets 2 elements per page. The values
we are measuring are the number of I/O operations, commu-
nication volume, and size for both construction and query
stages.

See Table 3 for the snapshot for particular distribution
(CA employees). Figure 2 shows all values we tracked for
all protocols and distributions. Values for ORE based pro-
tocols are averaged. Being “cold” in our simulations means
executing the first query and being warm means the first
query has been previously executed. This difference makes
sense only for POPE as its first query incurs disproportion-
ately large overhead by design.

Note that all ORE based protocols behave the same except
when ciphertext size matters. Thus, since BCLO, CLWW
and FH-OPE have the same ciphertext size, they create B+

trees with the same page capacity and have the same num-
ber of I/Os for different operations. Lewi-Wu and CLOZ
schemes have relatively large ciphertexts and thus induce
larger traffic (see Subfigure 2c) and smaller B+ tree branch-
ing factor resulting in greater number of I/O requests (see
Subfigure 2d).

Kerschbaum protocol requires high number of I/O re-
quests during construction since it needs to insert an ele-
ment into the arbitrary place in an array and rotate the
data structure on a disk. It also induces large communica-
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tion volume since the insertion is interactive unlike in other
protocols.

POPE suffers huge penalty on the first query (see Sub-
figures 2d, 2e and 2f) since it reads and sends all blocks to
the client for sorting. POPE performance improves as more
queries are executed.

Logarithmic-BRC does not support interactive insertions
and thus its construction stage is not benchmarked. Oth-
erwise it is the most performant of all non-ORE protocols.
Note, however, that its performance depends on the result
size, not data size.

As expected, ORAM performs worse than the ORE-based
protocols, but its performance is in-line with the non-ORE
protocols. It may seem that ORAM does especially bad
in construction communication (Subfigures 2e, 2f), but it is
only because POPE has a shortcut in construction. This
“debt” is being payed off during queries (Subfigure 2f).

Note that the values do not vary a lot among different
data distributions except for I/O requests. I/O performance
depends on the result size for queries, and is therefore more
sensitive to data distribution.

Also note that using an ORE scheme in B+ tree does not
add any substantial I/O overhead (see “No encryption”).

On Figure 4a it is clear that query performance does not
depend substantially on the query size, except for Logarithmic-
BRC, for which the relation is linear. ORE schemes with
large ciphertext sizes are little sensitive to a query size since
the number of blocks needed to answer the query increases.

Figure 3 shows Table 2 asymptotic values. The simulation
was run for uniform dataset is 247000 records (hundred per-
cent), 1000 queries, 0.5% query range adn 128 blocks cache
size. Kerschbaum construction I/Os and cold POPE query
values grow linearly with inputs, while the other protocols
grow logarithmically, square-logarithmically, or do not grow.

On Figure 4b protocols’ performance over time is shown.
Evidently, POPE is the only protocol where cold vs warm
makes a difference.

6. REMARKS AND CONCLUSION
Having done theoretical and practical evaluations of the

protocols, we have found that primitive usage is a much bet-
ter performance measure than the plain time measurements.
We have also found that I/O optimization is a vital char-
acteristic of a protocol and cannot be neglected. When it
comes to practical use, the observed time of a query execu-
tion is a mix of a number of factors and I/O requests can
slow the system down dramatically.

ORE-based B+ tree protocol is provably I/O optimal and
can potentially be extended by using another data structure
with ORE. Its security / performance trade off is tunable
by choosing and parametrizing the underlying ORE scheme.
Each scheme we considered has its own unique advantages
and drawbacks. BCLO [9] is the least secure scheme in the
benchmark, but is stateless and produces numerical cipher-
texts, so it may be used in the databases without any modi-
fications. Frequency-hiding OPE [38] also has this property,
hides the frequency of the ciphertexts, but is stateful and
requires uniformity of the input. Lewi-Wu [45] is easily cus-
tomizable in terms of tuning performance to security ratio,
and it offers the security benefits of left / right framework —
particuarly useful for B+ tree. CLWW [19] provides weaker

security guarantees but is the fastest scheme in the bench-
mark.

Kerschbaum protocol [40] offers semantically secure ci-
phertexts, hiding the location of the smallest and largest of
them, and has a simple implementation. The protocol is
well-suited for bulk insertions and scales well.

POPE [55] offers a “deferred” B+ tree implementation.
By deferring the sorting of its ciphertexts, POPE remains
more secure for the small number of queries. POPE has
the fastest insertion routine and does not reveal the order of
most of its ciphertexts. It will be more performant for the
systems where there are a lot more insertions than queries.
We would also recommend to “warm up” the structure to
avoid a substantial delay upon the first query.

Logarithmic-BRC is a perfect choice for huge datasets
where query result size is limited. It is the only protocol
with substantial space overhead, but it offers scalability and
perfect (in a snapshot setting) security.

ORAM has shown the most interesting result. Its perfor-
mance is not only adequate, but also in-line with the other
even less secure protocols. With this empirical result, we
expect more interest in ORAM research, possibly discover-
ing tighter bounds, faster constructions and efficient ways to
use the schemes. On the other hand, this construction’s per-
formance is in some sense an upper bound on performance
of less secure (access pattern revealing) protocols, as prac-
titioner will choose ORAM over both less secure and less
performant solutions.

We found our framework to be a powerful tool for ana-
lyzing the protocols. We encourage protocol developers to
contribute their implementations and run the corresponding
simulations.

An important future work is to understand better the
meaning of the different leakage profiles and their implica-
tions. Furthermore, another direction is to try to improve
the performance of the most secure schemes (e.g. [16]).
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